
Airbee-ZNS Lite Version TI2.04

Programmer’s Reference Manual

Airbee Wireless, Inc.
9400 Key West Avenue

Rockville, Maryland 20850 USA

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 2

REVISION HISTORY

No Date Description

V1.0 May 15, 2005 Initial Creation

V2.0 July 05, 2005 Primitives, Data structures added

V3.0 July 06, 2005 Application notes added

V4.0 July 07, 2005 Format Changed

V5.0 July 09, 2005 Updated and reformatted

V6.0 July 11,2005 Format changes

V6.1 July 13, 2005 Incorporate format changes

V6.2 Sep 9, 2005 Flowchart Modified

V6.3 Sep 13, 2005 General edits

V6.4 Sep15, 2005 General edits

V6.5 Sep18, 2005 Changes to Application Development, Stack Architecture, Overview,
APIs etc.

V6.6 Sep 23, 2005 Software version change

V6.7 Sep 23, 2005 General Edits

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 3

Table of Contents
1 Purpose.. 6

2 Scope of Airbee-ZNS Lite Programmer’s Reference Manual.. 7

3 Airbee Network Stack Architecture ... 8

3.1 Physical (PHY) Layer .. 8

3.2 Medium Access Control (MAC) Layer.. 9

3.3 Network (NWK) Layer .. 9

3.3.1 Operating System... 9

4 Airbee-ZNS Lite - Overview.. 10

4.1 Scope of Airbee-ZNS Lite Software .. 10

5 Device Types in a Network .. 11

5.1 PAN Coordinator.. 11

5.2 Router... 11

5.3 End device.. 11

6 Airbee-ZNS Lite Network Stack Architecture .. 12

6.1 Data Types ... 12

6.2 Airbee-ZNS Lite Network API .. 12

6.2.1 V_ABZB_NWK_Init ... 12

6.2.2 V_ABZB_NWK_NLMERESETRequest .. 13

6.2.3 V_ABZB_NWK_NLMENETWORKFORMATIONRequest .. 15

6.2.4 V_ABZB_NWK_NLMEPERMITJOININGRequest .. 18

6.2.5 V_ABZB_NWK_NLMENETWORKDISCOVERYRequest.. 20

6.2.6 V_ABZB_NWK_NLMEJOINRequest ... 22

6.2.7 V_ABZB_NWK_NLMESTARTROUTERRequest ... 25

6.2.8 V_ABZB_NWK_NLDEDATARequest .. 27

6.2.9 V_ABZB_NWK_NLMERESETConfirm ... 30

6.2.10 V_ABZB_NWK_NLMENETWORKFORMATIONConfirm.. 31

6.2.11 V_ABZB_NWK_NLMEPERMITJOININGConfirm ... 33

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 4

6.2.12 V_ABZB_NWK_NLMENETWORKDISCOVERYConfirm ... 34

6.2.13 V_ABZB_NWK_NLMEJOINConfirm .. 35

6.2.14 V_ABZB_NWK_NLMEJOINIndication ... 36

6.2.15 V_ABZB_NWK_NLMESTARTROUTERConfirm .. 37

6.2.16 V_ABZB_NWK_NLDEDATAConfirm ... 38

6.2.17 V_ABZB_NWK_NLDEDATAIndication .. 39

6.2.18 Software Timer... 41

7 Summary of AIRBEE-ZNS Lite NETWORK API ... 44

7.1 Stack APIs .. 44

7.2 Call Back Functions ... 45

8 Application Development .. 46

8.1 To Configure a PAN Coordinator: ... 46

8.2 To configure Routers:... 47

9 Application Notes ... 49

9.1 PAN Coordinator - Startup... 49

9.2 Router - Startup .. 49

9.3 Permit Join ... 49

9.4 Application Binding ... 49

9.5 Mail Box Messaging Concept .. 50

9.6 Behavioral characteristics of Airbee-ZNS Lite .. 50

10 Limitations .. 54

Table of Figures

Figure 1. Airbee Stack Architecture ... 8

Figure 2. Typical Airbee network ... 11

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 5

ACRONYMS
API Application Program Interface

ASL Application Support Layer

DSL Device Support layer

MAC Medium Access Control

PAN Personal Area Network

PHY Physical Layer

SAP Service Access Point

APP-SAP Application SAP

APP- HW-SAP Application Hardware SAP

NLDE- SAP Network Layer Data Entity SAP

NLME- SAP Network Layer Management Entity SAP

MLDE- SAP MAC Layer Data Entity SAP

MLME- SAP MAC Layer Management Entity SAP

PD- SAP PHY Data SAP

PLME- SAP PHY Layer Management Entity SAP

RF- SAP Radio Frequency SAP

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 6

1 Purpose
The purpose of this document is to provide the developer, comprehensive API information to develop
and deploy ZigBee networks using Airbee-ZNS Lite Version_TI2.04.

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 7

2 Scope of Airbee-ZNS Lite Programmer’s Reference Manual
The Airbee-ZNS Lite API Programmer’s Reference Manual enumerates the APIs available for
developers of mesh network applications using four TI ZigBee-ready devices. The document further
gives an overview of:

1. Airbee Network Stack Architecture

2. Airbee-ZNS Lite software

3. Device types in a network

4. Application development

5. Limitations of the software

This document provides a brief guide for writing custom applications in C using Airbee-ZNS Lite.

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 8

3 Airbee Network Stack Architecture
Airbee Network stack Architecture is derived from ZigBee specification with usability-enhanced
extensions. The stack architecture of the Airbee Network is shown in the following illustration:

Figure 1. Airbee Stack Architecture

Note: Airbee-ZNS Lite software implements only the Physical (PHY), Medium Access (MAC) and
Network (NWK) layers of the ZigBee-ready Airbee stack architecture. So only the PHY, MAC and
NWK layers are explained in the forthcoming section.

The software adopts a layered architecture, where each layer performs a specific set of services for
the layer above. Service Access Points (SAP) provides the interface between layers. The data
services and management services are accessed by the upper layers through the respective SAPs.
The SAPs support a number of service primitives to achieve the required functionality.

3.1 Physical (PHY) Layer
The PHY layer mainly consists of a radio transceiver and a micro controller. The PHY layer accepts
commands from the MAC layer, transfers the data from radio to MAC and vice versa. The radio can
operate in one of the three frequency bands, viz. 2.4 GHz (Global), 915 MHz (Americas) and 868
MHz (Europe). In the frequency band of 2.4 GHz, the radio can operate with sixteen channels. During
data reception, PHY layer collects the link quality indication and forwards to upper layers through the
MAC layer.

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 9

3.2 Medium Access Control (MAC) Layer
The MAC sub-layer provides the interface between Network Layer and the PHY layer. The MAC data
and Management services are accessed through their respective service points. The essential
features of MAC sub-layer are Beacon Management, Channel access through slotted / Un-slotted
CSMA mechanism. In addition, MAC sub-layer provides Frame-validation, Association,
Disassociation and reliable data delivery. MAC offers security as an option.

3.3 Network (NWK) Layer
The NWK layer contains mechanisms that are used to associate and disassociate a device from a
network and transmit data frames to the intended destinations. In addition, the NWK layer of an
Airbee coordinator is responsible for starting a new network and assigning addresses to newly
associated devices. The routing is an important function of the coordinator device. Based on the
network topology, the PAN Coordinator and Router implement either hierarchical or table based
routing.

3.3.1 Operating System

Airbee Operating System (OS) is generic software, specially designed to manage embedded system
resources and implement tasks. Some of the advantages the OS presents are:

• Occupies very little memory space

• Optimum support for management and implementation of the tasks

• Supports compile time configuration resulting in minimum use of system resources

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 10

4 Airbee-ZNS Lite - Overview
Airbee-ZNS, the ZigBee-ready stack software, saves precious development time while achieving
higher return on investment upon deployment of ZigBee networks. Airbee-ZNS has been developed
to achieve maximum portability and adaptability so that stack binaries can be made available on any
microcontroller, transceiver and operating system platform.

The possibility of developing a full ZigBee stack or parts of it on new or modified hardware platforms
offers a phenomenal advantage to ZigBee application developers, ZigBee hardware developers, tool
developers, and manufacturers of ZigBee compatible products. This protocol stack versatility also
enables custom implementations.

In a typical embedded software design and implementation, the extent of portability is limited by
factors such as undefined interaction between the radio and the medium, hardware- dependent
optimization needs, the ordering of bytes in a multi-byte packet, and numerous other details with few
or no specifications.

Airbee-ZNS Lite software is designed and structured to perform optimally within these limitations.
Airbee-ZNS Lite is built to address complete portability across all microcontrollers. Each layer in the
ZigBee standard has its own Application Programming Interface (API).

Airbee-ZNS Lite, as the name suggests, is a limited but powerful implementation from the Airbee-ZNS
Lite family of ZigBee stack software.

4.1 Scope of Airbee-ZNS Lite Software
Airbee-ZNS Lite implements PHY, MAC and Network layers of the ZigBee-ready Airbee stack
architecture. Refer to section 3 for an overview of the Airbee stack architecture

Note: The Application Support Sub-layer (APS), ZigBee Device Objects (ZDO) layer, Application
Framework (AF) and Security services are not implemented.

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 11

5 Device Types in a Network
A ZigBee network is made up of three types of devices, viz. a PAN Coordinator, Routers and End
Devices. Each type of device plays a specific role in the network.

Figure 2. Typical Airbee network

Every device needs to be configured for its assigned role in the network through programmable
options. The Airbee Network stack provides a set of parameters for configuring the capability and
other network operational characteristics.

The configuration parameters for each of the devices are defined as a part of network initialization.
These parameters are programmable, either at the factory or in the field.

5.1 PAN Coordinator
The PAN Coordinator is responsible for forming the network. There can be only ONE PAN
Coordinator in a PAN. This device scans and chooses an operational channel within its range of
frequencies in the ISM band (Channel 11 to 26). Each Personal Area Network has a unique
identification number, viz. PAN Identity (PAN ID). After starting as a PAN Coordinator, it allows other
devices to join to form a network. Other devices can join the PAN Coordinator as Routers or End
Devices.

5.2 Router
The router plays a vital role in extending the network diameter. Routers allow other routers and end
devices to join the network. Routers also route data from other network devices to its destination.

5.3 End device
The End Device is restricted to communicate only with its parent, which could be a Router or a PAN
Coordinator. However, it can communicate data to other remote devices through its parent, which
could be a Router or a PAN coordinator or another end device in its Personal Area Network.

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 12

6 Airbee-ZNS Lite Network Stack Architecture
Airbee-ZNS Lite Network stack provides API for starting and managing the network formation,
discovery, data transmission and reception. The sub-sections define the functionality of API. The
criteria for invoking the API and the response of the Airbee Network stack are defined in the “When
generated” and “On Receipt” section, respectively.

The design of Network stack API is based on the task-based architecture. Each layer in the stack is
defined as a separate task. The NWK stack API consists of Application, Network, and MAC
combined with PHY and IDLE tasks. The application task is exposed to the application developers to
build custom applications.

6.1 Data Types
The commonly used data types in this API document are tabulated below:

Mnemonics Data Types
UINT8 unsigned char

UINT16 unsigned int

UINT32 unsigned long

REAL float

UINT64 unsigned long long

BOOL unsigned char

TRUE Number Constant

FALSE Number Constant

6.2 Airbee-ZNS Lite Network API
The Network stack APIs are explained with examples in the following section.

6.2.1 V_ABZB_NWK_Init

Function Prototype

V_ABZB_NWK_Init (UINT8 DeviceRole, UINT8 StackProfile, BOOL Security)

When generated:

This API is called by the application task to define the role of the device in the network, type of
application profile used in this application, and security in the network. This run-time configuration of
the device is initialized based on the set initial values.

• The device can be configured as Coordinator, Router or End Device in a network. In a ZigBee network,
there can be only one Coordinator.

• The stack profile value for a network is defined by ZigBee Alliance for each profile.

• The security of the network device can be enabled / disabled during initialization.

On Receipt:

The network stack initializes the dependent parameters of the device.

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 13

Parameters:

Element Name Data Type Data
Size

Value Return
Type

Purpose/Remarks

DeviceRole UINT8

1 0 to 2

Void DeviceRole:

0-Coordinator

1- router,

2- end device

StackProfile UINT8

1 5 StackProfile:

Stack profile which is running.

Security BOOL 1 0 or 1 Security:

1 - MAC security is TRUE

0- MAC security is set to FALSE

Example:

Refer to the API V_ABZB_NWK_Init which is called in the function
V_ABZB_APP_COORDINATOR_INIT in the file ABZB_APP_TASK.c

File Name – ABZB_APP_TASK.c

Function Name - V_ABZB_APP_COORDINATOR_INIT

void V_ABZB_APP_COORDINATOR_INIT()

{

//NWK init for coordinator

V_ABZB_NWK_Init (COORDINATOR, M_ABZB_STACK_PROFILE, FALSE);

………………………………

………………………………

}

6.2.2 V_ABZB_NWK_NLMERESETRequest

Function Prototype

V_ABZB_NWK_NLMERESETRequest()

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 14

When generated:

This API is invoked during initialization of the application program. The device either starts a network
as PAN Coordinator or joins the network as a Router or an end device, depending on its
configuration. All the layers in the stack get initialized with this primitive call based on the defined
role.

On Receipt:

AIRBEE Network Stack performs channel scanning, network identification and network formation in
the case of a PAN coordinator. In the case of Router or end-device, it performs discovery process
and joins a target network.

Element Name Data Type Data
Size

Return
Type

Purpose/Remarks

NLMERESETRequ
est()

void

1 void All layers in the stack get initialized.

Example:
Refer to the API V_ABZB_NWK_NLMERESETRequest, which is called in the function
V_ABZB_APP_NetworkResetRequest in the file ABZB_APP_TASK.c

File Name – ABZB_APP_TASK.c

Function Name - V_ABZB_APP_NetworkResetRequest0

void V_ABZB_APP_NetworkResetRequest0()

{

………………………………

// Sending NLME-RESET REQUEST

V_ABZB_NWK_NLMERESETRequest();

// waiting till the NLME_RESET_CONFIRM is received

while(Msg.MACMsg.MsgId != NLME_RESET_CONFIRM)

// Getting message from the APP mailbox

GET_MESSAGE(APP_MBX, &(Msg.Msg));

// free the message pointer sent by the NWK layer

free(Msg.MACMsg.Message.MsgPtr);

………………………………

}

……..)

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 15

6.2.3 V_ABZB_NWK_NLMENETWORKFORMATIONRequest

Function Prototype

V_ABZB_NWK_NLMENETWORKFORMATIONRequest (stNLMENWKFORMATIONRequest *
NLME_NWK_Formation_Request)

When generated:

This primitive is generated only by the coordinator of the network. This is the first step in forming a
network. If a coordinator operates in the 2.4GHZ frequency, it can scan up to sixteen different
channels in the network to select a particular to channel to form the network. Scanning all the
channels before starting the network is not mandatory. Any channel can be selected to form the
network. For an example, to start a network in the eleventh channel, a value of 2048(211) is passed in
this parameter.

Scan Channels: To scan 11th and 12th Channel, scan channel parameter needs to be 6144 (a sum of
211 and 212). Channels from 11th to 26th can be scanned by passing appropriate parameters. To scan
11th and 13th channel, the value of 10240 (a sum of 211 and 213) needs to be used. If a channel is free,
the network will be successfully started in the channel.

PanID: A unique value for the network, as an identifier. The valid range is in between 0 to 0x3fff.

Scan Duration: The time duration for scanning each of the channels.

Beacon Order: In the Mesh network, the value is 15.

Super Frame Order: In the Mesh network, the value is 15.

On Receipt:

The network layer scans all the request channels for a given period of scan duration. The network
layer analyses the scan results and forms the network in the first available channel with the PANID
value passed.

Parameters: The input parameter - stNLMENWKFORMATIONRequest

. Element Name Data Type Data
Size

Return
Type

Purpose/Remarks

NLME_NWK_For
mation_Request

Pointer to
stNLMENWKFORMA
TIONRequest *

1 Void Formation of the network by the
Coordinator

stNLMENWKFORMATIONRequest

Element Name Data Type Data Size Purpose/Remarks

ScanChannels UINT32 4 Each bit is set or cleared depending on the
channel to be scanned

PanID UINT16 2 The unique identifier value for a network

The range 0 to 0x3ffff

ScanDuration UINT8 1 The length of time to spend scanning each
channel

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 16

Element Name Data Type Data Size Purpose/Remarks

BeaconOrder UINT8 1 The beacon order of the network. In this
case, a default value of 15

SuperframeOrder UINT8 1 The superframe order of the network. In this
case, a default value of 15

Semantics:

struct stNLMENWKFORMATIONREQUEST

{

UINT32 ScanChannels;

 UINT16 PANId;

 UINT8 ScanDuration;

 UINT8 BeaconOrder;

 UINT8 SuperframeOrder;

 BOOL BatteryLifeExtension;

}

PANId – The 16-bit PAN identifier of the discovered network. The 2 highest-order bits of this
parameter are reserved and shall be set to 0.

Scan Duration – valid values between 0x00 to 0x0e. This value is used to calculate the length of time
to spend scanning each channel. The time spent scanning each channel is
(aBaseSuperframeDuration * (2n + 1)) symbols, where n is the value of the ScanDuration parameter.

Scan Channel - The five most significant bits (b27... b31) are reserved. The 16 least significant bits
(b11 ... b26) indicate which channels are to be scanned in preparation for starting a network (1=scan,
0=do not scan) for each of the 16 valid channels

Beacon Order – defines how often the beacon order is transmitted; if Beacon Order = 15, the beacon
order is not transmitted

Superframe Order – Superframe order defines the length of the active portion of the beacon

Logical Channel – The current logical channel occupied by the network.

Battery Life Extension - If this value is TRUE, the NLME will request that the ZigBee coordinator is
started supporting battery life extension mode. If this value is FALSE, the NLME will request that the
ZigBee coordinator is started without supporting the battery life extension mode.

Example:
Refer to the API
V_ABZB_NWK_NLMENETWORKFORMATIONRequest(NLME_NWK_Formation_Request, which is
called in the function V_ABZB_APP_NetworkFormationRequest in the file ABZB_APP_TASK.c

File Name – ABZB_APP_TASK.c

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 17

Function Name - V_ABZB_APP_NetworkFormationRequest0

void V_ABZB_APP_NetworkFormationRequest0()

{

// Create an instant to the tMACMsgDetails

tMACMsgDetails Msg = {0};

// Create an instance to the stNLMENWKFORMATIONRequest

stNLMENWKFORMATIONRequest *NLME_NWK_Formation_Request;

………………………………

// Allocate the memory to an instance of the stNLMENWKFORMATIONRequest

NLME_NWK_Formation_Request =
(stNLMENWKFORMATIONRequest*)malloc(sizeof(stNLMENWKFORMATIONRequest));

// checking whether the pointer is NULL, before use it.

if(NLME_NWK_Formation_Request != NULL_PTR)

{

// Stuff the values in the member of the instance

// Stuff the scan channels

NLME_NWK_Formation_Request->ScanChannels = M_ABZB_SCAN_CHANNELS;

// Stuff the PANId

NLME_NWK_Formation_Request->PANId = M_ABZB_PANID;

// Stuff the ScanDuration

NLME_NWK_Formation_Request->ScanDuration = M_ABZB_SCAN_DURATION;

// Stuff the BeaconOrder

NLME_NWK_Formation_Request->BeaconOrder = M_ABZB_BEACONORDER;

// Stuff the SuperframeOrder

NLME_NWK_Formation_Request->SuperframeOrder = M_ABZB_SUPERFAMEORDER;

// Stuff the BatteryLifeExtension

NLME_NWK_Formation_Request->BatteryLifeExtension = FALSE;

//sending the NLME Formation Request

V_ABZB_NWK_NLMENETWORKFORMATIONRequest(NLME_NWK_Formation_Request);

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 18

//waiting till the NLME_NETWORK_FORMATION_CONFIRM is received

while(Msg.MACMsg.MsgId != NLME_NETWORK_FORMATION_CONFIRM)

//getting message from the APP mailbox

GET_MESSAGE(APP_MBX, &(Msg.Msg));

//free the message pointer sent by the NWK layer

free(Msg.MACMsg.Message.MsgPtr);

}

………………………………

}

6.2.4 V_ABZB_NWK_NLMEPERMITJOININGRequest

Function Prototype

V_ABZB_NWK_NLMEPERMITJOININGRequest(stNLMEPERMITJOININGRequest*
ABZB_Pst_PermitJoinReq);

When generated:

 This primitive can be called by the next higher layer to allow or disallow devices from associating to
this device. This can be called inside a ZigBee coordinator or a router.

On Receipt:

This API forms the permit joining request message and sends it to the Network layer mail box.

Parameters:

Element Name Data Type Data
Size

Return
Type

Purpose/Remarks

ABZB_Pst_Permi
tJoinReq

Pointer to
stNLMEPERMITJOININGRequ
est

 Void

stNLMEPERMITJOININGRequest

Element Name Data Type Data
Size

Purpose/Remarks

PermitDuration UINT8 1 The length of time in seconds during which the
ZigBee PAN Coordinator or Router will allow
association

Semantics:

struct stNLMEPERMITJOININGREQUEST

{

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 19

UINT8 PermitDuration;

}

Permit Duration - The length of time in seconds during which the ZigBee coordinator or router will
allow associations. The values 0x00 and 0xff indicate that permission is disabled or enabled,
respectively, without a specified time limit.

Example:
Refer to the API V_ABZB_NWK_NLMEPERMITJOININGRequest(NLME_Permit_Joining_Request),
which is called in the function V_ABZB_APP_Send_NLME_PermitJoin in the file ABZB_APP_TASK.c

File Name – ABZB_APP_TASK.c

Function Name - V_ABZB_APP_Send_NLME_PermitJoin

void V_ABZB_APP_Send_NLME_PermitJoin(UINT8 ABZB_Uch_PermitDuration)

{

// Create an instant to the tMACMsgDetails

tMACMsgDetails Msg= {0};

//Create an instance to the stNLMEPERMITJOININGRequest

stNLMEPERMITJOININGRequest *NLME_Permit_Joining_Request;

………………………………

………………………………

// Allocate the memory to an instance of the stNLMEPERMITJOININGRequest
NLME_Permit_Joining_Request =
(stNLMEPERMITJOININGRequest*)malloc(sizeof(stNLMEPERMITJOININGRequest));

// checking whether the pointer is NULL, before use it

if(NLME_Permit_Joining_Request != NULL_PTR)

{

// Stuff the values in the member of the instance

// Stuff the PermitDuration

NLME_Permit_Joining_Request->PermitDuration = ABZB_Uch_PermitDuration;

//sending the NLME permit join request to the NWK layer
V_ABZB_NWK_NLMEPERMITJOININGRequest(NLME_Permit_Joining_Request);

//waiting till the permit join confim is received

while(Msg.MACMsg.MsgId != NLME_PERMIT_JOINING_CONFIRM

//getting message from the APP mailbox

GET_MESSAGE(APP_MBX, &(Msg.Msg));

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 20

//free the message pointer sent by the NWL free(Msg.MACMsg.Message.MsgPtr);... }

……………………………………………………………

}

6.2.5 V_ABZB_NWK_NLMENETWORKDISCOVERYRequest

Function Prototype

V_ABZB_NWK_NLMENETWORKDISCOVERYRequest(stNLMENWKDISCOVERYRequest*
ABZB_Pst_DiscoveryReq)

When generated:

This API is used by the next higher layer on the device to discover any other PANs currently
operating in the vicinity or Personal operating space.

On Receipt:

The discovery request is processed and forwarded to the network mail box.

Parameters:

Element Name Data Type Data
Size

Return Type Purpose/Remarks

ABZB_Pst_Discover
yReq

Pointer to
stNLMENWKDISCOVER
YRequest

 Void

stNLMENWKDISCOVERYRequest

Element Name Data Type Data Size Purpose/Remarks

Scan Channels UINT32 2 Each bit is set or cleared depending on the
channel to be scanned

ScanDuration UINT8 1 A value used to calculate the length of time to
spend scanning each channel

Semantics:

Struct stNLMENWKDISCOVERYRequest

{

UNIT 32 Scan Channels;

UNIT 8 ScanDuration;

}

Example:
Refer to the API
V_ABZB_NWK_NLMENETWORKDISCOVERYRequest(NLME_NWK_DISCOVERY_Request, which
is called in the function V_ABZB_APP_NetworkDiscoveryRequest in the file ABZB_APP_TASK.c

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 21

File Name – ABZB_APP_TASK.c

Function Name - V_ABZB_APP_NetworkDiscoveryRequest0

void V_ABZB_APP_NetworkDiscoveryRequest0()

{

………………………………

// Create an instant to the tMACMsgDetails

tMACMsgDetails Msg ={0};

//Create an instance to the stNLMENWKDISCOVERYRequest

stNLMENWKDISCOVERYRequest *NLME_NWK_DISCOVERY_Request

………………………………

// Allocate the memory to an instance of the stNLMENWKDISCOVERYRequest

NLME_NWK_DISCOVERY_Request =
(stNLMENWKDISCOVERYRequest*)malloc(sizeof(stNLMENWKDISCOVERYRequest));

// checking whether the pointer is NULL, before use it.

if(NLME_NWK_DISCOVERY_Request != NULL_PTR)

{

// Stuff the values in the member of the instance

// Stuff the scan channels

NLME_NWK_DISCOVERY_Request->ScanChannels = M_ABZB_SCAN_CHANNELS;

// Stuff the scan duration

NLME_NWK_DISCOVERY_Request->ScanDuration = M_ABZB_SCAN_DURATION;

// sending the NLME Discovery request
V_ABZB_NWK_NLMENETWORKDISCOVERYRequest(NLME_NWK_DISCOVERY_Request);

// waiting till the Network discovery confirm is received

while(Msg.MACMsg.MsgId != NLME_NETWORK_DISCOVERY_CONFIRM)

// getting the message from the APP mailbox

GET_MESSAGE(APP_MBX, &(Msg.Msg));

// free the message pointer sent by the NWK layer

free(Msg.MACMsg.Message.MsgPtr);

}

……}

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 22

6.2.6 V_ABZB_NWK_NLMEJOINRequest

Function Prototype

V_ABZB_NWK_NLMEJOINRequest(stNLMEJOINRequest * ABZB_Pst_JoinReq)

When Generated

The next higher layer of a device generates this primitive to request to join a new network. The new
device can join a new network directly using orphaning procedure or to locate and re-join a network
after being orphaned. It validates the input parameters and sends orphan scan request or associate
request to the MAC layer depending on the rejoin parameter set to FALSE/TRUE.

On Receipt

This API forms the join Request message and sends it to the Network layer mail box.

Parameters: The return type for this API is void.

Element Name Data Type Data
Size

Return
Type

Purpose/Remark
s

ABZB_Pst_JoinRe
q

Pointer to
stNLMEJOINRequest

 Void

stNLMEJOINRequest

Element Name Data Type Data Size Purpose/Remarks

PANId UINT8 1 The PAN identifier of the network to attempt to
join or rejoin

JoinAsRouter BOOL 1 The parameter is TRUE/FALSE depending on the
device wants to join as a Router or not

RejoinNetwork BOOL 1 The parameter is TRUE/FALSE depending on the
device whether it is rejoining the network or not
(TRUE-Rejoin, FALSE-does not join)

ScanChannels UINT32 4 Each bit is set or cleared depending on the
channel to be scanned

ScanDuration UINT8 1 The length of time to spend scanning each
channel

PowerSource UINT8 1 This is the parameter to a part of MAC layer
association request

RxOnWhenIdle UINT8 1 This parameter indicates whether the device can
be expected to receive packets over the air during
idle portions of the active portion of its superframe

MACSecurity UINT8 1 This parameter becomes a part of the Capability
Information parameter passed to the MLME-
ASSOCIATE.request primitive

Semantics:

struct stNLMEJOINREQUEST

{

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 23

UINT32 ScanChannels;

 UINT16 PANId;

 UINT8 ScanDuration;

 UINT8 PowerSource;

 UINT8 RxOnWhenIdle;

 UINT8 MACSecurity;

 BOOL JoinAsRouter;

 BOOL RejoinNetwork;

}

PANId – The 16-bit PAN identifier of the discovered network. The 2 highest-order bits of this
parameter are reserved and shall be set as 0.

Scan Duration – valid values between 0x00 to 0x0e. This value is used to calculate the length of time
to spend scanning each channel. The time spent scanning each channel is
(aBaseSuperframeDuration * (2n + 1)) symbols, where n is the value of the ScanDuration parameter.

Scan Channel - The five most significant bits (b27 ... b31) are reserved. The 16 least significant bits
(b11 ... b26) indicate which channels are to be scanned in preparation for starting a network (1=scan,
0=do not scan) for each of the 16 valid channels

Beacon Order – defines how often the beacon order is transmitted; if Beacon Order = 15, the beacon
order is not transmitted

Superframe Order – Super frame order defines the length of the active portion of the beacon

Logical Channel – The current logical channel occupied by the network.

CapabilityInformation parameter passed to the MLME-ASSOCIATE.request primitive that is
generated as the result of a successful executing of a NWK join. The values are:

—0x01 = Mains-powered device.—0x00 = other power source.

RxOnWhenIdle - This parameter indicates whether the device can be expected to receive packets
over the air during idle portions of the active portion of the CAPa. The values are: 0x01 = the receiver
is enabled when the device is idle. 0x00 = the receiver may be disabled when the device is idle.
RxOnWhenIdle shall have a value of 0x01 for ZigBee coordinators and ZigBee routers operating in a
non-beacon-oriented network.

RejoinNetwork - The parameter is TRUE if the device is joining directly or rejoining the network using
the orphaning procedure. The parameter is FALSE if the device is requesting to join a network
through association.

MACSecurity - This parameter becomes a part of the CapabilityInformation parameter passed to the
MLME-ASSOCI-ATE.request primitive that is generated as the result of a successful executing of a
NWK join. The values are: 0x01 = MAC security enabled. 0x00 = MAC security disabled.

Example
Refer to the API V V_ABZB_NWK_NLMEJOINRequest(NLME_Join_Request);, which is called in the

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 24

function V_ABZB_APP_NetworkJoinRequest in the file ABZB_APP_TASK.c

File Name – ABZB_APP_TASK.c

Function Name - V_ABZB_APP_NetworkJoinRequest0

void V_ABZB_APP_NetworkJoinRequest0()

{

// Create an instant to the tMACMsgDetails

tMACMsgDetails Msg ={0};

//Create an instance to the stNLMEJOINRequest

stNLMEJOINRequest *NLME_Join_Request

………………………………

………………………………

// Allocate the memory to an instance of the stNLMEJOINRequest

NLME_Join_Request = (stNLMEJOINRequest *)malloc(sizeof(stNLMEJOINRequest));

// checking whether the pointer is NULL, before use it.

if(NLME_Join_Request != NULL_PTR)

{

// Stuff the values in the member of the instance

// Stuff the ScanChannels

NLME_Join_Request->ScanChannels = M_ABZB_SCAN_CHANNELS;

// Stuff the PANId

NLME_Join_Request->PANId = M_ABZB_PANID;

// Stuff the ScanDuration

NLME_Join_Request->ScanDuration = M_ABZB_SCAN_DURATION

// Stuff the PowerSource

NLME_Join_Request->PowerSource = ZERO;

// Stuff the PowerSource

NLME_Join_Request->RxOnWhenIdle = TRUE;

// Stuff the MACSecurity

NLME_Join_Request->MACSecurity = ZERO;

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 25

// Stuff the JoinAsRouter

NLME_Join_Request->JoinAsRouter = TRUE;

// Stuff the RejoinNetwork

NLME_Join_Request->RejoinNetwork = FALSE;

//Sending the NLME Join Request

V_ABZB_NWK_NLMEJOINRequest(NLME_Join_Request);

//waiting till the NLME_JOIN_CONFIRM is received

while(Msg.MACMsg.MsgId != NLME_JOIN_CONFIRM)

//Getting the message from the APP mailbox

GET_MESSAGE(APP_MBX, &(Msg.Msg));

//free the message pointer sent by the NWK layer

free(Msg.MACMsg.Message.MsgPtr);

}

………………………………

………………………………

}}

6.2.7 V_ABZB_NWK_NLMESTARTROUTERRequest

Function Prototype

V_ABZB_NWK_NLMESTARTROUTERRequest(stNLMESTARTROUTERRequest *
ABZB_Pst_StartRouterReq);

When generated:

This API is called by the next higher layer to request the network layer to request for the initialization
of itself as a router. If this API is not called, the device will function as an End device or an RFD.

On Receipt:

This API forms the start router request and sends it to the MAC layer. Further if the device role is
neither that of a coordinator nor a router, error is sent back to the layer which calls this API.

Parameters:

Element Name Data Type Data
Size

Return
Type

Purpose/Remarks

ABZB_Pst_StartRo
uterReq

Pointer to
stNLMESTARTROUTERRequest

Void

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 26

stNLMESTARTROUTERRequest

Element Name Data Type Data
Size

Purpose/Remarks

BeaconOrder UINT8 1 The beacon order of the network that the higher
layers wish to form

SuperFrameOrder UINT8 1 The superframe order of the network that the higher
layers wish to form

BatteryLifeExtensi
on

BOOL 1 Value of BatteryLifeExtension mode of the ZigBee
PAN Coordinator (TRUE/FALSE)

Semantics:

struct stNLMESTARTROUTERREQUEST

{

UINT8 BeaconOrder;

 UINT8 SuperFrameOrder;

 BOOL BatteryLifeExtension;

}

Beacon Order – defines how often the beacon order is transmitted; if Beacon Order = 15, the beacon
order is not transmitted

Superframe Order – Superframe order defines the length of the active portion of the beacon

Example:

Refer to the API V_ABZB_NWK_NLMESTARTROUTERRequest(NLME_Start_Router_Request);,
which is called in the function V_ABZB_APP_Network_StartRouterRequest0in the file
ABZB_APP_TASK.c

File Name – ABZB_APP_TASK.c

Function Name - V_ABZB_APP_Network_StartRouterRequest0

void V_ABZB_APP_Network_StartRouterRequest0(void)

{

// Create an instant to the tMACMsgDetails

tMACMsgDetails Msg= {0};

//Create an instance to the stNLMESTARTROUTERRequest

stNLMESTARTROUTERRequest *NLME_Start_Router_Request;

………………………………

……………………………….

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 27

// Allocate the memory to an instance of the stNLMESTARTROUTERRequest

NLME_Start_Router_Request =
(stNLMESTARTROUTERRequest*)malloc(sizeof(stNLMESTARTROUTERRequest));

// checking whether the pointer is NULL, before use it

if(NLME_Start_Router_Request != NULL_PTR)

{

// Stuff the values in the member of the instance

// Stuff the BeaconOrder

NLME_Start_Router_Request->BeaconOrder = M_ABZB_BEACONORDER;

// Stuff the SuperFrameOrder

NLME_Start_Router_Request->SuperFrameOrder = M_ABZB_SUPERFAMEORDER;

// Stuff the BatteryLifeExtension

NLME_Start_Router_Request->BatteryLifeExtension = FALSE;

//Sending the Start router request
V_ABZB_NWK_NLMESTARTROUTERRequest(NLME_Start_Router_Request);

//waiting till the START ROUTER CONFIRM IS RECEIVED

while(Msg.MACMsg.MsgId != NLME_START_ROUTER_CONFIRM)

//getting the message from the APP mailbox

GET_MESSAGE(APP_MBX, &(Msg.Msg));

//free the message pointer sent by the NWK layer

free(Msg.MACMsg.Message.MsgPtr);

}

………}

6.2.8 V_ABZB_NWK_NLDEDATARequest

Function Prototype

V_ABZB_NWK_NLDEDATARequest(stNLDEDATARequest * ABZB_Pst_DataReq)

When Generated

This API is called whenever the upper layer wants to send data packet to its peer device.

On Receipt:

The NSDU packet is formed by this API and sent to the MAC layer to be sent further over the air. If
the destination address is 0xffff, the packet is broadcast. Otherwise the routing is initiated to get the

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 28

next hop address where the packet needs to be sent.

Parameters:

Element Name Data Type Data
Size

Return Type Purpose/Remarks

ABZB_Pst_DataRe
q

Pointer to
stNLDEDATAReque
st

 void

stNLDEDATARequest

Element Name Data Type Data Size Purpose/Remarks

DstAddr Network Address 2 The network address of the entity or entities to
which the NSDU is being transferred

NsduLength Integer

Variable <=
nwkcMaxPayl
oadSize

The number of octets comprising the NSDU to be
transferred

Nsdu SetofOctets Variable The set of octets comprising the NSDU to be
transferred

NsduHandle UINT8 1 The handle associated with the NSDU to be
transmitted by the NWK layer entity

BroadcastRadius UINT8 1 The distance, in hops, that a broadcast frame will
be allowed to travel through the network.

DiscoverRoute UINT8 1 TRUE = enable route discovery

FALSE = disable route discovery

SecurityEnable UINT8 1 The SecurityEnable parameter may be used to
enable NWK layer security processing for the
current frame

Semantics:

struct stNLDEDATAREQUEST

{

UINT16 DstAddr;

 UINT8 NsduLength;

 UINT8 *Nsdu;

 UINT8 NsduHandle;

 UINT8 BroadcastRadius;

 UINT8 DiscoverRoute;

 BOOL SecurityEnable;

}

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 29

Dst Address - The network address of the entity or entities to which the NSDU is being transferred.

NSDU Length - The number of octets comprising the NSDU to be transferred.

NSDU Handle - The handle associated with the NSDU to be transmitted by the NWK layer entity.

Broadcast Radius - The distance, in hops, that a frame will be allowed to travel through the network.

Discover Route - The Discover Route parameter may be used to control route discovery operations
for the transit of this frame.

0x00 = suppress route discovery.

0x01 = enable route discovery.

0x02 = force route discovery.

Security Enable - The Security Enable parameter may be used to enable NWK layer security
processing for the current frame. If the security level specified in the NIB is 0, meaning no security,
then this parameter will be ignored. Otherwise, a value of TRUE denotes that the security processing
specified by the security level will be applied and a value of FALSE denotes that no security
processing will be applied.

Example:
Refer to the API V_ABZB_NWK_NLDEDATARequest(ABZB_Pst_DataReq, which is called in the
function V_ABZB_APP_Send_NLDEDataRequest in the file ABZB_APP_TASK.c

File Name – ABZB_APP_TASK.c

Function Name - V_ABZB_APP_Send_NLDEDataRequest

void V_ABZB_APP_Send_NLDEDataRequest()

{

//Create an instance to the stNLDEDATARequest

stNLDEDATARequest *ABZB_Pst_DataReq;

………………………………

// Allocate the memory to an instance of the stNLDEDATARequest

ABZB_Pst_DataReq = (stNLDEDATARequest *) malloc(sizeof(stNLDEDATARequest));

// checking whether the pointer is NULL, before use it

if(ABZB_Pst_DataReq != NULL_PTR)

{

// Stuff the values in the member of the instance

// Stuff the DstAddr

ABZB_Pst_DataReq-> DstAddr = Ui_ABZB_ZADKV2_GetDstAddress();

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 30

// Stuff the NsduLength

ABZB_Pst_DataReq-> NsduLength = M_ABZB_APP_DATA_NSDULENGTH;

// Allocate the memory for NSDU

ABZB_Pst_DataReq-> Nsdu =(unsigned char *)malloc(sizeof(UINT8));

// checking whether the pointer is NULL, before use it

if(ABZB_Pst_DataReq-> Nsdu != NULL_PTR)

{

// Stuff the Nsdu

*(ABZB_Pst_DataReq-> Nsdu) = M_ABZB_PROTOCOL_ID_APP_DATA;

// Stuff the NsduHandle

ABZB_Pst_DataReq-> NsduHandle = M_ABZB_APP_DATA_NSDUHANDLE;

// Stuff the BroadcastRadius

ABZB_Pst_DataReq-> BroadcastRadius = ZERO;

// Stuff the DiscoverRoute

ABZB_Pst_DataReq-> DiscoverRoute = ZERO;

// Stuff the SecurityEnable

ABZB_Pst_DataReq-> SecurityEnable = FALSE;

//sending the NLDE DATA REQUEST after framing the packet
V_ABZB_NWK_NLDEDATARequest(ABZB_Pst_DataReq);

}

}

……});

6.2.9 V_ABZB_NWK_NLMERESETConfirm

Function Prototype

V_ABZB_NWK_NLMERESETConfirm(stNLMERESETConfirm *ABZB_Pst_ResetConfirm)

When Generated

This is generated in response to a prior request to the network by the next higher layer (APS).

On Receipt

On receipt of this primitive, the next higher layer is notified of the results of its request to reset the
NWK layer. If the request was successful, then the status would reflect a success in re-setting the
network layer. Otherwise, a FAILURE will be sent to the next higher layer (APS).

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 31

Parameters

Element Name Data Type Data Size Return Type Purpose/Remarks

ABZB_Pst_ResetC
onfirm

Pointer to
stNLMERESETConfirm

 Void

stNLMERESETConfirm

Element Name Data Type Data Size Purpose/Remarks

NetworkCount UINT8 1 Gives the number of networks

NetworkDescriptor StNetworkDescript
or

- A list of descriptors, one for each of the networks
discovered

Status UINT8 1 Status of the operation

Semantics:

struct stNLMERESETCONFIRM

{

UINT8 Status;

}

Status - The result of the reset operation

(Refer 6.2.10 for typical example)

6.2.10 V_ABZB_NWK_NLMENETWORKFORMATIONConfirm

Function Prototype

V_ABZB_NWK_NLMENETWORKFORMATIONConfirm (stNLMENWKFORMATIONConfirm *
ABZB_Pst_NetFormationConfirm)

When Generated

This primitive is generated by the network layer and issued to its next higher layer (APS) after
receiving the status of network formation request from the MAC layer.

On Receipt

This primitive will inform the next higher layer, the results of a prior network formation request from
the next higher layer. If the formation is successful, the ‘SUCCESS’ status is sent to the APS layer.

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 32

Parameters

Element Name Data Type Data
Size

Return
Type

Purpose/Remark
s

ABZB_Pst_NetFor
mationConfirm

Pointer to
stNLMENWKFORMATIONConfi
rm

 void

stNLMENWKFORMATIONConfirm

Element Name Data Type Data
Size

Purpose/Remarks

Status UINT8 1 Status of the operation

Semantics:

struct stNLMENWKFORMATIONCONFIRM

{

UINT8 Status;

}

Status - The result of the attempt to initialize a ZigBee coordinator or request a change to the super
frame configuration

Example
Refer to the API
V_ABZB_NWK_NLMENETWORKFORMATIONRequest(NLME_NWK_Formation_Request, which is
called in the function V_ABZB_APP_NetworkFormationRequest0 in the file ABZB_APP_TASK.c

File Name – ABZB_APP_TASK.c

Function Name - V_ABZB_APP_NetworkFormationRequest0

void V_ABZB_APP_NetworkFormationRequest0()

{

tMACMsgDetails Msg = {0};

…………………………

…………………………

…………………………

//sending the NLME Formation Request
V_ABZB_NWK_NLMENETWORKFORMATIONRequest(NLME_NWK_Formation_Request);

…………………………

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 33

…………………………

…………………………

//This is the typical usage for confirmation.

//waiting till the NLME_NETWORK_FORMATION_CONFIRM is received while(Msg.MACMsg.MsgId
!= NLME_NETWORK_FORMATION_CONFIRM)

//getting message from the APP mailbox

GET_MESSAGE(APP_MBX, &(Msg.Msg));

…………………………

…………………………

…………………………

}

6.2.11 V_ABZB_NWK_NLMEPERMITJOININGConfirm

Function Prototype

V_ABZB_NWK_NLMEPERMITJOININGConfirm (stNLMEPERMITJOININGConfirm *
ABZB_Pst_PermitJoinConfirm)

When Generated

This is generated in response to the Permit joining request issued by a router or a ZigBee
coordinator. This is generated after receiving the confirmation from the MAC layer.

On Receipt

When this primitive is received, the network layer notifies the next higher layer (APS) of the results of
the permit joining request.

Parameters

Element Name Data Type Data
Size

Return
Type

Purpose/Remark
s

ABZB_Pst_PermitJ
oinConfirm

Pointer to
stNLMEPERMITJOININGConfir
m

void

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 34

stNLMEPERMITJOININGConfirm

Element Name Data Type Data
Size

Purpose/Remarks

Status UINT8 1 Status of the operation

Semantics:

struct stNLMEPERMITJOININGCONFIRM

{

UINT8 Status;

}

Status - The status of the corresponding request

(Refer 6.2.10 for typical example)

6.2.12 V_ABZB_NWK_NLMENETWORKDISCOVERYConfirm

Function Prototype

V_ABZB_NWK_NLMENETWORKDISCOVERYConfirm(stNLMENWKDISCOVERYConfirm *
ABZB_Pst_DiscoveryConfirm)

When Generated

This API is called whenever the network discovery task initiated by the network layer is completed.

On Receipt

This API shall update the next higher layer with the results of the network discovery. This API sends
the number of networks discovered and descriptors for each of the networks discovered to the next
higher layer (APS).

Parameters

Element Name Data Type Data Size Return
Type

Purpose/Remark
s

ABZB_Pst_Discove
ryConfirm

Pointer to
stNLMENWKDISCOVERYConf
irm

 void

stNLMENWKDISCOVERYConfirm

Element Name Data Type Data Size Purpose/Remarks

NetworkCount UINT8 1 Gives the number of networks

NetworkDescriptor StNetworkDescriptor - A list of descriptors, one for each of the
networks discovered

Status UINT8 1 Status of the operation

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 35

Semantics:

struct stNLMENWKDISCOVERYCONFIRM

{

stNetworkDescriptorList NetworkDescriptorList;

 UINT8 NetworkCount;

 UINT8 Status;

}

Network Descriptor List – A list of descriptors, one for each of the networks discovered. Table 103
gives a detailed account of the contents of each item.

Network Count – Gives the number of networks discovered by the search.

Status - Status value returned with the MLME-SCAN.confirm primitive

(Refer 6.2.10 for typical example)

6.2.13 V_ABZB_NWK_NLMEJOINConfirm

Function Prototype

V_ABZB_NWK_NLMEJOINConfirm(stNLMEJOINConfirm * ABZB_Pst_JoinConfirm)

When Generated

This primitive is generated by the Network layer when a response is received from the MAC layer for
a prior join request issued by the network layer. If the prior request is successful, the same is sent to
the next higher layer.

On Receipt

On receipt of this, the network layer extracts the status given by the MAC layer and the same is sent
to the next higher layer (APS) on the initiating device.

Parameters

Element Name Data Type Data
Size

Return Type Purpose/Remar
ks

ABZB_Pst_JoinConfir
m

Pointer to
stNLMEJOINConfirm

 void

stNLMEJOINConfirm

Element Name Data Type Data Size Purpose/Remarks

PANId UINT16 2 The PAN identifier from the NLME-JOIN.request
to which this is a confirmation

Status UINT8 1 Status of the operation

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 36

Semantics:

struct stNLMEJOINCONFIRM

{

UINT16 PANId;

 UINT8 Status;

}

PANId – The PAN identifier from the NLME-JOIN.request to which this is a confirmation. The 2
highest-order bits of this parameter are reserved and should be set to 0.

Status - The status of the corresponding request

(Refer 6.2.10 for typical example)

6.2.14 V_ABZB_NWK_NLMEJOINIndication

Function Prototype

V_ABZB_NWK_NLMEJOINIndication(stNLMEJOINIndication * ABZB_Pst_JoinIndication)

When Generated

This primitive is issued by the network layer to the next higher layer after successfully adding a device
to the network.

On Receipt

On receipt of this primitive, network layer informs the next higher layer (APS) that a device has joined
the network by association.

Parameters

Element Name Data Type Data
Size

Return
Type

Purpose/Remarks

ABZB_Pst_JoinIndi
cation

Pointer to
stNLMEJOINIndication

 Void

stNLMEJOINIndication

Element Name Data Type Data Size Purpose/Remarks

ShortAddress UINT16 2 The network address of an entity that has been
added to the network

ExtendedAddress UINT64 8 The 64-bit IEEE address of an entity that has
been added to the network

CapabilityInformati
on

UINT8 1 Specifies the operational capabilities of the joining
device

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 37

Semantics:

struct stNLMEJOININDICATION

{

UINT64 ExtendedAddress;

 UINT16 ShortAddress;

 UINT8 CapabilityInformation;

BOOL SecureJoin;

}

Extended Address – The 64-bit IEEE address of an entity that has been added to the network

Short Address – The network address of an entity that has been added to the network.

Capability Information – Specifies the operational capabilities of the joining device.

Secure Join - This parameter will be TRUE if the underlying MAC association was performed in a
secure manner and FALSE otherwise

6.2.15 V_ABZB_NWK_NLMESTARTROUTERConfirm

Function Prototype

V_ABZB_NWK_NLMESTARTROUTERConfirm(stNLMESTARTROUTERConfirm *
ABZB_Pst_StartRouterConfirm)

When Generated

This primitive is issued when the network layer receives a response to an earlier START ROUTER
request by the network layer.

On Receipt

When the network layer receives this confirm primitive, it extracts the status from the MAC start
confirm primitive (that is issued by the MAC to the network layer) and sends that status to the higher
layer (APS).

Parameters

Element Name Data Type Data
Size

Return Type Purpose/Remark
s

ABZB_Pst_StartRo
uterConfirm

Pointer to
stNLMESTARTROUTERConf
irm

 Void

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 38

stNLMESTARTROUTERConfirm

Element Name Data Type Data Size Purpose/Remarks

Status UINT8 1 Status of the operation

Semantics:

Struct stNLMESTARTROUTERCONFIRM

{

UINT8 Status;

}

Status - The result of the attempt to initialize a ZigBee router

6.2.16 V_ABZB_NWK_NLDEDATAConfirm

Function Prototype

V_ABZB_NWK_NLDEDATAConfirm(stNLDEDATAConfirm *ABZB_Pst_DataConfirm)

When Generated

This API is invoked by the local network layer and sent to the next upper layer after the NLDE Data
request is processed.

On Receipt

On receipt of this primitive the status of the data transmission is conveyed to the next upper layer. If
the data has been successfully sent then the SUCCESS would be returned to the next higher layer
else FAILURE is sent to the next upper layer.

Parameters

Element Name Data Type Data Size Return Type Purpose/Remarks

ABZB_Pst_DataCo
nfirm

Pointer to
stNLDEDATAConfirm

 void

stNLDEDATAConfirm

Element Name Data Type Data Size Purpose/Remarks

NsduHandle Integer 1 The handle associated with the NSDU being
confirmed

Status Status 1 The status of the corresponding request

Semantics:

struct stNLDEDATACONFIRM

{

UINT8 NsduHandle;

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 39

UINT8 Status;

}

NSDU Handle The handle associated with the NSDU being confirmed

Status - The status of the corresponding request

6.2.17 V_ABZB_NWK_NLDEDATAIndication

Function Prototype

V_ABZB_NWK_NLDEDATAIndication(stNLDEDATAIndication *ABZB_Pst_DataIndication)

When Generated

This API is called by the Network layer to inform the next higher layer (APS) layer that data for this
device has been received. Any data that is not meant for this device is rejected.

On Receipt

The upper layer is informed about the data received at this device along with the sender’s address.

Parameters

Element Name Data Type Data Size Return
Type

Purpose/Remarks

ABZB_Pst_DataInd
ication

Pointer to
stNLDEDATAIndication

 void

stNLDEDATAIndication

Element Name Data Type Data Size Purpose/Remarks

SrcAddress UINT16 2 The individual device address from which the
NSDU originated

NsduLength UINT16 1 The number of octets comprising the NSDU being
indicated

Nsdu Set of octets Variable The set of octets comprising the NSDU being
indicated

LinkQuality UINT8 1 The link quality indication delivered by the MAC
on receipt of this frame as a parameter of the
MCPSDATA

Semantics:

struct stNLDEDATAINDICATION

{

UINT16 SrcAddress;

 UINT8 NsduLength;

 UINT8 *Nsdu;

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 40

UINT8 LinkQuality;

}

Src Address – The individual device address from which the NSDU originated

NsduLength – The number of octets comprising the NSDU being indicated.

Nsdu – The set of octets comprising the NSDU being indicated.

Link Quality - The link quality indication delivered by the MAC on receipt of this frame as a parameter
of the MCPS-DATA.Indication primtitive

Example
Refer to the API V_ABZB_NWK_NLDEDATARequest(ABZB_Pst_DataReq, which is called in the
function V_ABZB_APP_Forever_Loop in the file ABZB_APP_TASK.c

File Name – ABZB_APP_TASK.c

Function Name - V_ABZB_APP_Forever_Loop

void V_ABZB_APP_Forever_Loop()

{

//structure variable which will hold the MSG id and pointer from the kernel

tMACMsgDetails Msg={0};

//This is the typical usage for Indication.

while(TRUE)

{

//getting message from the Application mailbox

GET_MESSAGE(APP_MBX, &(Msg.Msg));

…………………………

…………………………

//switches to a case depending on the message ID

switch(Msg.MACMsg.MsgId)

{

…………………………

…………………………

…………………………

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 41

//Indicates that there is data indication from the NWK layer

case NLDE_DATA_INDICATION:

…………………………

…………………………

…………………………

}

}

}

6.2.18 Software Timer

Function Prototype

V_ABZB_Timer_Soft_set_timer3(UINT8 ABZB_Uch_TimerNo, UINT32 ABZB_Ul_Time, APP_MBX)

When Generated

This API is called by the Application to post a message to the Application Mail Box, either on
occurrence of an event or at periodic intervals.

On Receipt

Application will post a message to the Application Mail Box (APP_MBX) after the lapse of a preset
time (ABZB_Ul_Time). The message will carry the timer number (ABZB_Uch_TimerNo).

Element Name Data Type Data Size Purpose/Remarks

User defined UINT8 1 The application posts a message at the expiry of
preset time with the timer identity as 0xE0 or
0xE1 or 0xE2

User defined UINT32 1 Preset time

User defined S_Mail_Box Posting to APP_ MBX

Example
Refer to the API V_ABZB_NWK_NLDEDATARequest(ABZB_Pst_DataReq, which is called in the
function V_ABZB_APP_Send_NLDEDataRequest in the file ABZB_APP_TASK.c

File Name – ABZB_ASP_TI_SRCc

Function Name - PORT1_SRC

#pragma vector=PORT1_VECTOR

__interrupt void PORT1_SRC (void)

{

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 42

…………………………

…………………………

…………………………

// LOADING THE TIMER FOR DEBOUNCE

V_ABZB_Timer_Soft_set_timer3(M_DEBOUNCE_EVENT, M_ABZB_DSP_KEYDEBOUNCE,
APP_MBX);

…………………………

…………………………

…………………………

}

Handle the Message when Timer expires

File Name – ABZB_APP_TASK.c

Function Name - V_ABZB_APP_Forever_Loop

void V_ABZB_APP_Forever_Loop()

{

//structure variable which will hold the MSG id and pointer from the kernel

tMACMsgDetailsMsg={0};

//This is the typical usage for Handle Timer Expiration.

while(TRUE)

{

//getting message from the Application mailbox

GET_MESSAGE(APP_MBX, &(Msg.Msg));

…………………………

//switches to a case depending on the message ID

switch(Msg.MACMsg.MsgId)

{

…………………………

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 43

…………………………

…………………………

//the message is posted on mailbox when a keypress is occurred hence //construct a data packet and
send it TI NWK

case M_DEBOUNCE_EVENT:
V_ABZB_APP_Send_NLDEDataRequest();

break;

…………………………

…………………………

…………………………

}

}}

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 44

7 Summary of AIRBEE-ZNS Lite NETWORK API

7.1 Stack APIs
Applicable for

S.No Primitive Name Parameter Type Return
type Coordinator Router

1
V_ABZB_NWK_Init

DeviceRole

StackProfile

Security

UINT8

UINT8

BOOL

Void Y Y

2 V_ABZB_NWK_NLMERESETRequest NA NA Void Y Y

3
V_ABZB_NWK_NLMENETWORKFOR
MATIONRequest ABZB_Pst_NetFormation

Req

Pointer to
stNLMENWKFORMATION
Request

Void Y N

4
V_ABZB_NWK_NLMEPERMITJOININ
GRequest ABZB_Pst_PermitJoinRe

q

Pointer to

stNLMEPERMITJOININGR
equest

Void Y Y

5
V_ABZB_NWK_NLMENETWORKDISC
OVERYRequest ABZB_Pst_DiscoveryReq

Pointer to

stNLMENWKDISCOVERY
Request*

Void N Y

6 V_ABZB_NWK_NLMEJOINRequest ABZB_Pst_JoinReq Pointer of type
stNLMEJOINRequest N Y

7 V_ABZB_NWK_NLMESTARTROUTER
Request

ABZB_Pst_StartRouterR
eq

Pointer to
stNLMESTARTROUTERRe
quest

Void N Y

8 V_ABZB_NWK_NLDEDATARequest ABZB_Pst_DataReq
Pointer
tostNLDEDATARequest Void Y Y

9 V_ABZB_Timer_Soft_set_timer3
ABZB_Uch_TimerNo,
ABZB_Ul_Time,
APP_MBX

UINT8,
UINT32,
S_Mail_Box

Void Y Y

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 45

7.2 Call Back Functions
Applicable for

S.No Primitive Name Parameter Type Return
type Coordinator Router

10
V_ABZB_NWK_NLMERESETConfirm

ABZB_Pst_ResetConfirm Pointer to
stNLMERESETConfirm Void Y Y

11 V_ABZB_NWK_NLMENETWORKFOR
MATIONConfirm

ABZB_Pst_NetFormation
Confirm

Pointer to
stNLMENWKFORMATIONCo
nfirm

Void Y N

12 V_ABZB_NWK_NLMEPERMITJOININ
GConfirm

ABZB_Pst_PermitJoinCo
nfirm

Pointer to
stNLMEPERMITJOININGCon
firm

Void Y Y

13 V_ABZB_NWK_NLMENETWORKDISC
OVERYConfirm

ABZB_Pst_DiscoveryCon
firm

Pointer to
stNLMENWKDISCOVERYCo
nfirm

Void N Y

14
V_ABZB_NWK_NLMEJOINConfirm

ABZB_Pst_JoinConfirm Pointer to
stNLMEJOINConfirm Void N Y

15
V_ABZB_NWK_NLMEJOINIndication

ABZB_Pst_JoinIndication Pointer to
stNLMEJOINIndication Void Y Y

16
V_ABZB_NWK_NLMESTARTROUTER
Confirm ABZB_Pst_StartRouterC

onfirm

Pointer to
stNLMESTARTROUTERConf
irm

Void N Y

17 V_ABZB_NWK_NLDEDATAConfirm ABZB_Pst_DataConfirm Pointer of type
stNLDEDATAConfirm Y Y

18 V_ABZB_NWK_NLDEDATAIndication ABZB_Pst_DataIndicatio
n

Pointer of type
stNLDEDATAIndication Y Y

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 46

8 Application Development
Custom applications are developed using the Airbee-ZNS Lite libraries. The library is developed
using IAR’s ‘C’ compiler. Hence IAR-IDE ‘C’ compiler is a pre-requisite for custom application
development using Airbee ZNS Lite libraries.

The Stack/Heap size in the IAR-IDE workspace should be 500/600 bytes and is set under the
“General” option. C/C++ optimization size should be set to High (maximum optimization).

Application development involves the following process:

• Create / modify source file in ‘C’.

• Compile.

• Flash the code on to the device.

To create/modify custom application using the Airbee-ZNS Lite firmware delivered:

• Download the Airbee firmware deliverable

• Double-click ‘ZADKV2\Project’ folder.

• Double-click ‘Project ‘folder.

• Double-click the ‘IAR-IDE’ file named ABZB_ZADKV2.eww to open in IAR-IDE work bench.

Note: Do not change the IAR-IDE workspace environment settings.

• Click the ‘Application folder’ at the left pane project window.

• Select the project ABZB_ZADKV2-Debug and under ‘Options’ select the Pre-processor settings.

• Double click the required source file (e.g. ABZB_APP_TASK.c). The file opens in the editor window on
the right side pane.

The source file can now be modified / edited. In order to develop a new source file select File>New.

• Compile the file with the source code written / modified by clicking ‘Compile’ icon.

• Write / modify / create source codes as needed and compile each file as in 10.

• Click on ‘Make’ to generate .hex file.

The hex files will be generated and added to your folder.

8.1 To Configure a PAN Coordinator:
II Open the ABZB_FOUR_NODE_APP.h and uncomment the macro

“COORDINATOR”.

III Ensure Routers are commented

IIII Right click ABZB_NWK_COORDINATOR.Lib, select ‘Options’ and uncheck the
exclude check box.

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 47

IVI Under Options select ‘Linker’ at Category list

VI Click Output tab to enter the file name of the Coordinator

VII Select the project ABZB_ZADKV2-Debug to ‘Clean’ and ‘Rebuild All’

8.2 To configure Routers:
VIII Select the project ABZB_ZADKV2-Debug and under ‘Options’ select the Pre-

processor settings

VIIII Open the ABZB_FOUR_NODE_APP.h and uncomment the macro ROUTER.

IXI Ensure Coordinator is commented

XI Open the ABZB_FOUR_NODE_APP.h and uncomment the ROUTER macro

XII Right click ABZB_NWK_ROUTER.Lib, select ‘Options’ and uncheck the exclude
check box.

XIII Under Options select ‘Linker’ at Category list

XIIII Click Output tab to enter the file name of the Router

XIVI Select the project ABZB_ZADKV2-Debug to ‘Clean’ and ‘Rebuild All’

• Flash the hex files generated to the devices by clicking ‘Debug’ icon and mark the devices as PAN
Coordinator / Router1 / Router2 / Router3.

The application workspace for custom development is provided for TI MSP430F1612 platform. The
procedure described above to generate the executables is for MSP430F1612.

To build the executables for TI MSP430F1611, in the project ‘Options’, under ‘Target’ tab the ‘Device’
should be selected as MSP430F1611. Rest of the procedure remain as described above.

For the 4 Node Demo Application, the sample demo Hex files are generated as below:

Open …:…..\IAR Systems\Embedded Workbench 4.0\430\config

Select ‘lnk430F1611. xcl’ and open the file

Under RAM memory, set the Heap size to 1100 – 2500

Rest of the procedure to generate the executables same as described above.

In the Airbee-ZNS Lite stack library, memory occupied by the Coordinator and router libraries as in
the table below:

Build Flash (kilo bytes) RAM (kilo bytes)

Coordinator 46 4.4

Router 46 4.4

The Flash and RAM sizes are similar for both MSP430F1611 and 1612.

The memory available for the application programmers’ use as below:

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 48

Device Flash (kilo bytes) RAM (kilo bytes)

MSP430F1611 2 5.6 *

MSP430F1612 9 0.6 *

* By default the stack memory RAM is set to 500 bytes, assuming that the user may require this size of stack
memory in most applications. The user has the option to use the unused memory space for his application
development by reducing the stack depth, which will increase the available RAM to that extent.

For instance, the 4-node application uses approximately 70 bytes leaving 430 bytes of the stack (RAM) unused.

NOTE:

Only channels 11 to 26 can be used as per IEEE802.15.4 specifications.

Application task name shall not be changed.

Stack profile value 0x05 shall not be changed.

Sequence of the header file inclusion shall not be altered.

Sequence of the APIs called in the application task file ABZB_APP_TASK.c shall not be
altered.

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 49

9 Application Notes

9.1 PAN Coordinator - Startup
PAN Coordinator is the principal controller of an 802.15.4-2003 based wireless network. The Pan
Coordinator is responsible for network formation.

The sequence for network formation is as follows:

Network Reset – Network reset can be invoked through NLME-RESET primitive to reset the network
(Refer API V_ABZB_NWK_NLMERESETRequest)

Network Formation Request – Network formation can be invoked through NLME-NETWORK-
FORMATION primitive to initialize the device as a ZigBee Ready coordinator of a new network
(Refer: V_ABZB_NWK_NLMENETWORKFORMATIONRequest).

Network Permit Joining – Network permit joining can be invoked through NLME-PERMIT-JOINING
primitive to allow a ZigBee Ready Coordinator to accept devices onto its network. (Refer:
V_ABZB_NWK_NLMEPERMITJOININGRequest). Network formation is complete when Permit
Joining is successful.

9.2 Router - Startup
Router is an 802.15.4-2003 device responsible for associating & disassociating devices into its PAN
and is capable of routing messages between devices and supporting associations. The sequence for
Router startup is as follows:

Network Reset – Network reset can be invoked through NLME-RESET primitive to reset the network
(Refer: API V_ABZB_NWK_NLMERESETRequest)

Network Discovery Request – Network discovery can be invoked through NLME-NETWORK-
DISCOVERY to discover operating Personal Area Networks in its operating space. (Refer: Network
Join Request)

Network Join Request – Network Join request is invoked to enable the router join a network. (Refer:
V_ABZB_NWK_NLMEJOINRequest()). The same API can be used fort the rejoin request.

Network Permit Joining – Network permit joining can be invoked through NLME-PERMIT-JOINING
primitive to allow the router to accept devices onto its network. (Refer:
V_ABZB_NWK_NLMEPERMITJOININGRequest). Network formation is complete when Permit
Joining is successful.

9.3 Permit Join
This functionality enables a ZigBee ready PAN Coordinator or Router to set its permit duration. A
Router or PAN Coordinator will allow devices to join its network only when the permit duration is
active. If the value is set to 0Xff, it is always active.

This feature is exploited by the application to form the target mesh topology designed to demonstrate
the Airbee-ZNS Lite feature.

9.4 Application Binding
Application binding is done after network formation. Binding causes logical links to be created

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 50

between two or more co-operating devices to accomplish control or monitor functionality between the
devices. The source and the destination address of two co-operating devices are paired to form the
binding table.

9.5 Mail Box Messaging Concept
The communication (request, response, indication, and confirmation) in the Airbee stack is done by
messages passed between the layers through a mail box concept.

The Real Time Operating System (RTOS) governs the mail box.

Data and command indications are communicated from the network layer to the application through
messaging via the application mail box (APP_MBX). Application messages need not send any
message, as the required functionality is expressed as library functions illustrated in the Stack-API
section in the Programmer’s Reference Manual. Fetching and processing the mail box messages can
be referred in the ABZB_APP_TASK.C using the utility, GET_MESSAGE function.

User applications should be written into the body of the V_ABZB_APP_TASK_Main() function,
example is provided in the ABZB_APP_TASK.c file. Application task is exposed to the user to write
his application.

9.6 Behavioral characteristics of Airbee-ZNS Lite
The following flowchart describes the behavioral characteristics of Airbee-ZNS Lite in the 4-node
network configuration.

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 5

Router 1 is powered up to join the network. It will join the PAN
Coordinator as it is the only device in the network.

• LED D2 glows when Router 1 joins the network. The joining sequence
is explained in the Router Start up section.

• Permit join gets disabled on Router 1. (default)

• PAN Coordinator and Router 1 are the only devices in the network.
Only the PAN Coordinator has its permit join feature enabled.

Router 2 is powered up to join the network. It will join the PAN
Coordinator whose permit join is enabled.

• LED D2 on Router 2 glows when Router 2 joins the network. The
joining sequence is explained in the Router Start up section.

• Permit join gets disabled on Router 2. (default)

• PAN Coordinator’s permit join gets disabled after Router 1 and
Router 2 have joined it.

• PAN Coordinator sends a message to Router 1 to enable its permit
join.

• Now the permit join of PAN Coordinator and Router 2 are disabled.
Permit join of Router 1 is enabled.

A

The PAN Coordinator is powered up to initiate network formation.

• LED D2 on PAN Coordinator glows when Network formation is
complete. The Network formation sequence is explained in the Pan
Coordinator Startup section.

• Permit join of PAN Coordinator gets enabled to allow the other devices
to join the network. N

W
K

In
iti

al
iz

at
io

n
an

d
Fo

rm
at

io
n

N
W

K
D

is
co

ve
ry

an
d

A
ss

oc
ia

tio
n

fo
rR

ou
te

r1
Start
1

N
W

K
A

ss
oc

ia
tio

n
fo

rR
ou

te
r2

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04

Router 3 is powered up to join t
is the only device in the network

• LED D2 glows when Route
is explained in the Router S

• Permit join gets disabled o

• The permit join of the Rout
At this stage there are no d
enabled.

The PAN Coordinator broadcasts th

Now the devices are ready to com

Pressing the key SW1 on a device
appropriate device per the binding

C

A

 Page 52

he network. It will join the Router 1 as it
 with its permit join enabled.

r 3 joins the network. The joining sequence
tart up section.

n Router 3.(default)

er 1 is disabled after Router 3 has joined it.
evices in the network with permit join

e binding information to the network

municate within the network.

 will trigger the LED D1 to glow in the
 table.

B

N
W

K
A

ss
oc

ia
tio

n
fo

rR
ou

te
r3

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 53

The re-joining process need not occur in the given sequence in the flowchart. It may occur anywhere in
the process using orphan scan.

The child device will not be able to join the network if its parent device is rejoined the network after the
child device has joined.

B

Re-joining of Router 2:

Router 2 is powered up and performs an active scan. As there is no
response from PAN, Router 2 will perform orphan scan and re-joins the
network.

• LED D2 on Router 2 glows when Router 2 joins the network. The
joining sequence is explained in the Router Start up section.

• Permit join gets disabled on Router 2. (default)

• PAN Coordinator’s permit join gets disabled after Router 1 and Router
2 have joined it.

• PAN Coordinator sends a message to Router 1 to enable its permit
join.

• Now the permit join of PAN Coordinator and Router 2 are disabled.
Permit join of Router 1 is enabled.

Re-joining of Router 3:

Router 3 is powered up and performs an active scan. As there is no
response from Router 1, Router 3 will perform orphan scan and re-joins
the network.

• LED D2 glows when Router 3 joins the network. The joining sequence
is explained in the Router Start up section.

• Permit join gets disabled on Router 3. (default)

• The permit join of the Router 1 is disabled after Router 3 has joined it.
At this stage there are no devices in the network with permit join
enabled.

C

Data Communication

Programmer’s Reference Manual

Airbee-ZNS Lite Version TI2.04 Page 54

10 Limitations
• Until the bind table update is completed in all the four devices, the devices shall be within the

network range.

• All four devices must participate in the network.

• Bindings can be done only in one-to-one format, e.g. one key-press can be bound to one lamp only.

• This firmware supports only four device network and does not feature upper Application Layer.
However, Airbee has simplified interfaces with Application Layer to enable simpler development of
custom applications.

• The NSDUHANDLE in NLDEDataRequest should not be 0xEA or 0xEB or 0XEC. Also, the first
byte of the NSDUData should be 0x05.

• The IEEE address cannot be modified.

	1 Purpose
	2 Scope of Airbee-ZNS Lite Programmer’s Reference Manual
	3 Airbee Network Stack Architecture
	3.1 Physical (PHY) Layer
	3.2 Medium Access Control (MAC) Layer
	3.3 Network (NWK) Layer
	3.3.1 Operating System

	4 Airbee-ZNS Lite - Overview
	4.1 Scope of Airbee-ZNS Lite Software

	5 Device Types in a Network
	5.1 PAN Coordinator
	5.2 Router
	5.3 End device

	6 Airbee-ZNS Lite Network Stack Architecture
	6.1 Data Types
	6.2 Airbee-ZNS Lite Network API
	6.2.1 V_ABZB_NWK_Init
	6.2.2 V_ABZB_NWK_NLMERESETRequest
	6.2.3 V_ABZB_NWK_NLMENETWORKFORMATIONRequest
	6.2.4 V_ABZB_NWK_NLMEPERMITJOININGRequest
	6.2.5 V_ABZB_NWK_NLMENETWORKDISCOVERYRequest
	6.2.6 V_ABZB_NWK_NLMEJOINRequest
	6.2.7 V_ABZB_NWK_NLMESTARTROUTERRequest
	6.2.8 V_ABZB_NWK_NLDEDATARequest
	6.2.9 V_ABZB_NWK_NLMERESETConfirm
	6.2.10 V_ABZB_NWK_NLMENETWORKFORMATIONConfirm
	6.2.11 V_ABZB_NWK_NLMEPERMITJOININGConfirm
	6.2.12 V_ABZB_NWK_NLMENETWORKDISCOVERYConfirm
	6.2.13 V_ABZB_NWK_NLMEJOINConfirm
	6.2.14 V_ABZB_NWK_NLMEJOINIndication
	6.2.15 V_ABZB_NWK_NLMESTARTROUTERConfirm
	6.2.16 V_ABZB_NWK_NLDEDATAConfirm
	6.2.17 V_ABZB_NWK_NLDEDATAIndication
	6.2.18 Software Timer

	7 Summary of AIRBEE-ZNS Lite NETWORK API
	7.1 Stack APIs
	7.2 Call Back Functions

	8 Application Development
	8.1 To Configure a PAN Coordinator:
	8.2 To configure Routers:

	9 Application Notes
	9.1 PAN Coordinator - Startup
	9.2 Router - Startup
	9.3 Permit Join
	9.4 Application Binding
	9.5 Mail Box Messaging Concept
	9.6 Behavioral characteristics of Airbee-ZNS Lite

	10 Limitations

